EC
Data analysis and modelisation
Description
Data analysis and modelling
- Basic concepts :
- Definition of statistical and systematical uncertainties on measurements
- Random variables, probabilities, momenta and probabilistic laws
- Basic laws of random variables, the normal law and the central limit theorem
- Application : counting rates, selection efficiency, estimation for means
- Combining uncertainties from measurements :
- Joint probabilistic laws, covariance, correlation, the two-gaussians cases
- Uncertainty propagation
- Parameter estimation
- Introduction to statistics
- Basic methods : maximum likelihood (gaussian case, uncertainties, binned likelihood, extended likelihood), least squares (linear case, uncertainties, chi2 law)
- Minimising methods
- Hypothesis testing :
- Histogram fits
- Tests : two and single hypothesis, power and error, p-value, the Neyman test, chi2-test , Kolmogorov-test
- Advanced estimation :
- Interval estimation (confidence levels and intervals), low statistics, nuisance parameters
- Dynamic estimation, Kalman filter
- Modelization :
- Random number generation, Monte-Carlo techniques
- Application to simulation, use cases with ROOT
- Advanced techniques :
- Principle analysis components (PCA) and linear discriminant analysis (LDA)
- Multivariate Analysis (MVA), artificial neural networks and decision trees
Compétences visées
• Applying knowledge in physics
• Apply methods from mathematics and digital technology
• Produce a critical analysis, with hindsight and perspective
• Interact with colleagues in physics and other disciplines
• Develop and manage an experimental project, including digital aspects
• Operate an experimental device, including digital aspects, from use to data analysis
• Take on responsibilities in a team working on an experimental project
• Research a physics topic using specialised resources
• Communicate in writing and orally, including in English
• Contribute to research work in physics
• Respect ethical, professional and environmental principles in the practice of physics
Bibliographie
Books to be used as references
• W.T.Eadie, D.Drijard, F.E.James, M.Roos, B.Sadoulet, Statistical methods in experimental physics, North Holland, Amsterdam and London, 1971.
• J.R.Taylor, An introduction to Error Analysis University Science Books,1982
• P.R.Bevington and D.K.Robinson, Data reduction and error analysis for the Physical Sciences McGraw-Hill Book Company,1969
Textbooks
• L.Lyons, Statistics for nuclear and particle physics Cambridge University press, New York, 1986
• B.Escoubès, Statistiques et probabilités à l'usage des physiciens 1998
• R.Früwirth, Data analysis techniques for high energy physics Cambridge university press, 2000
• W.H.Hines, D.C.Montgomery, D.M.Goldsman, C.M.Borror, Probabilités et Statistique pour ingénieurs, Chenelière éducation, 2011
Reviews and Briefbooks
• the particle data group, Review of particle physics
• R.K.Bock, W.Krischer, The data analysis briefbook, Springer Verlag, 1998,
MCC
Les épreuves indiquées respectent et appliquent le règlement de votre formation, disponible dans l'onglet Documents de la description de la formation
- Régime d'évaluation
- CT (Contrôle terminal, mêlé de contrôle continu)
- Coefficient
- 2.2
Évaluation initiale / Session principale - Épreuves
| Libellé | Type d'évaluation | Nature de l'épreuve | Durée (en minutes) | Coefficient de l'épreuve | Note éliminatoire de l'épreuve | Note reportée en session 2 |
|---|---|---|---|---|---|---|
Written exam | CT | ET | 180 | 2.2 |
Seconde chance / Session de rattrapage - Épreuves
| Libellé | Type d'évaluation | Nature de l'épreuve | Durée (en minutes) | Coefficient de l'épreuve | Note éliminatoire de l'épreuve |
|---|---|---|---|---|---|
Written exam | CT | ET | 180 | 2.2 |