Site Unistra - Accueil
Faire un don

Description

Data analysis and modelling

  • Basic concepts :
    • Definition of statistical and systematical uncertainties on measurements
    • Random variables, probabilities, momenta and probabilistic laws
    • Basic laws of random variables, the normal law and the central limit theorem
    • Application : counting rates, selection efficiency, estimation for means

 

  • Combining uncertainties from measurements :
    • Joint probabilistic laws, covariance, correlation, the two-gaussians cases
    • Uncertainty propagation
    • Parameter estimation
    • Introduction to statistics
    • Basic methods : maximum likelihood (gaussian case, uncertainties, binned likelihood, extended likelihood), least squares (linear case, uncertainties, chi2 law)
    • Minimising methods

 

  • Hypothesis testing :
    • Histogram fits
    • Tests : two and single hypothesis, power and error, p-value, the Neyman test, chi2-test , Kolmogorov-test

 

  • Advanced estimation :
    • Interval estimation (confidence levels and intervals), low statistics, nuisance parameters
    • Dynamic estimation, Kalman filter

 

  • Modelization :
    • Random number generation, Monte-Carlo techniques
    • Application to simulation, use cases with ROOT

 

  • Advanced techniques :
    • Principle analysis components (PCA) and linear discriminant analysis (LDA)
    • Multivariate Analysis (MVA), artificial neural networks and decision trees

 

Compétences visées


•    Applying knowledge in physics

•    Apply methods from mathematics and digital technology

•    Produce a critical analysis, with hindsight and perspective

•    Interact with colleagues in physics and other disciplines

•    Develop and manage an experimental project, including digital aspects

•    Operate an experimental device, including digital aspects, from use to data analysis

•    Take on responsibilities in a team working on an experimental project

•    Research a physics topic using specialised resources

•    Communicate in writing and orally, including in English

•    Contribute to research work in physics

•    Respect ethical, professional and environmental principles in the practice of physics 

Bibliographie

 Books to be used as references 
• W.T.Eadie, D.Drijard, F.E.James, M.Roos, B.Sadoulet, Statistical methods in experimental physics, North Holland, Amsterdam and London, 1971. 
• J.R.Taylor, An introduction to Error Analysis University Science Books,1982 
• P.R.Bevington and D.K.Robinson, Data reduction and error analysis for the Physical Sciences McGraw-Hill Book Company,1969

 Textbooks 
• L.Lyons, Statistics for nuclear and particle physics Cambridge University press, New York, 1986 
• B.Escoubès, Statistiques et probabilités à l'usage des physiciens 1998 
• R.Früwirth, Data analysis techniques for high energy physics Cambridge university press, 2000 
• W.H.Hines, D.C.Montgomery, D.M.Goldsman, C.M.Borror, Probabilités et Statistique pour ingénieurs, Chenelière éducation, 2011


 Reviews and Briefbooks 
• the particle data group, Review of particle physics
• R.K.Bock, W.Krischer, The data analysis briefbook, Springer Verlag, 1998, 

Contact

Responsable(s) de l'enseignement
Boris Hippolyte : boris.hippolyte@unistra.fr

MCC

Les épreuves indiquées respectent et appliquent le règlement de votre formation, disponible dans l'onglet Documents de la description de la formation

Régime d'évaluation
CT (Contrôle terminal, mêlé de contrôle continu)
Coefficient
2.2

Évaluation initiale / Session principale - Épreuves

LibelléType d'évaluationNature de l'épreuveDurée (en minutes)Coefficient de l'épreuveNote éliminatoire de l'épreuveNote reportée en session 2
Written exam
CTET1802.2

Seconde chance / Session de rattrapage - Épreuves

LibelléType d'évaluationNature de l'épreuveDurée (en minutes)Coefficient de l'épreuveNote éliminatoire de l'épreuve
Written exam
CTET1802.2