Site Unistra - Accueil
Faire un don

Description

The objective is to introduce machine learning approaches and numerical methods able to treat various physical questions.

Compétences visées

•    Applying knowledge in physics;

•    Apply methods from mathematics and digital technology;

•    Produce a critical analysis, with hindsight and perspective;

•    Interact with colleagues in physics and other disciplines;

•    Research a physics topic using specialised resources;

•    Communicate in writing and orally, including in English;

•    Respect ethical, professional and environmental principles in the practice of physics.

Syllabus

  1. Introduction to machine learning
  2. Supervised learning:
  3. Classification: support vector machine
  4. Classification/regression: decision tree
  5. Unsupervised learning:
  6. Clustering methods
  7. dimensional reduction
  8. Unified view of classical methods (FD, FE). Application to Helmholtz equation.
  9. Tensor method for large dimensional Schrodinger equation.
  10. Neural networks bases methods. Application to Grad-Shafranov PDE
  11. Eulerian methods. Applicationt to Radiative transfer
  12. Semi-Lagrangian methods. Application to linear Vlasov equation.
  13. Introduction to physical and data driven model reduction. Applications to previous PDE.

Contact

Responsable pédagogique
Laurent Chemin : laurent.chemin@unistra.fr
Emmanuel Franck : franck@math.unistra.fr

MCC

Les épreuves indiquées respectent et appliquent le règlement de votre formation, disponible dans l'onglet Documents de la description de la formation

Régime d'évaluation
CT (Contrôle terminal, mêlé de contrôle continu)
Coefficient
1.0

Évaluation initiale / Session principale - Épreuves

LibelléType d'évaluationNature de l'épreuveDurée (en minutes)Coefficient de l'épreuveNote éliminatoire de l'épreuveNote reportée en session 2
Oral exam
CTEO200.50
Written report
CCR0.50

Seconde chance / Session de rattrapage - Épreuves

LibelléType d'évaluationNature de l'épreuveDurée (en minutes)Coefficient de l'épreuveNote éliminatoire de l'épreuve
Oral exam
CTEO200.50
Written report
CTR0.50