Site Unistra - Accueil
Faire un don

Description

Ce second cours d'algèbre est centré sur l'algèbre linéaire : propriété du déterminant, étude de certaines familles d'applications linéaires, théorie de la dimension.

Compétences visées

Objectifs : savoir-faire et compétences

Maîtrise des notions d'algèbre linéaire de manière à pouvoir aborder la réduction des endomorphismes. Notions de base sur les groupes, en particulier sur le groupe symétrique en vue de la définition du déterminant.
Physique 12 120hCI (+20hTP à la place des DST)
Optique ondulatoire // Electrocinétique //

Syllabus

Groupe symétrique S_n, la signature comme homomorphisme de groupes.

Déterminants; liens avec aire et volume. Caractérisation du rang. Comatrice et formules de Cramer.

Espaces vectoriels sur un corps (exemples avec K = Q, R, C). Exemples (K^n, K[X], espaces fonctionnels ...). Sous-espaces vectoriels : somme, intersection, somme directe, supplémentaires.

 

Applications linéaires : somme, composition ; exemples : formes linéaires, endomorphismes, symétries, projecteurs.

Théorie de la dimension : familles génératrices, libres, espaces vectoriels de dimension finie, théorème de la base incomplète, dimension d'un espace vectoriel, d'un sous-espace vectoriel. Dimension de la somme de deux sous-espaces vectoriels. Noyau, image, rang, trace d'une application linéaire. Théorème du rang. Matrice d'une application linéaire dans des bases. Changements de bases, matrices équivalentes, matrices semblables.